/
by ai.smithery
This MCP server enables users to perform scientific computations regarding linear algebra and vect…
Server configuration and capabilities from the MCP manifest
Size: 10,845 bytes (2,712 tokens)
Tools Found: 27
Analysis ID: zzfurgdf
This MCP server provides tools for matrix and tensor operations, vector calculus, and visualization.
Stars
Registry ID: 41f4e655-f368-4219-b79c-b0098dd1fc67
Added to Registry: 9/21/2025
Last Updated: 9/22/2025
Last Seen: 9/22/2025
License: MIT License
Default Branch: main
Last Push: 9/2/2025
Open Issues: 0
Historical performance and growth metrics over time
{ "name": "numpy-mcp", "tags": [], "tools": [ { "name": "add_matrices", "description": "Adds two stored tensors element-wise.", "input_schema": { "type": "object", "required": [ "name_a", "name_b" ], "properties": { "name_a": { "type": "string", "description": "The name of the first tensor." }, "name_b": { "type": "string", "description": "The name of the second tensor." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "subtract_matrices", "description": "Adds two stored tensors element-wise.", "input_schema": { "type": "object", "required": [ "name_a", "name_b" ], "properties": { "name_a": { "type": "string", "description": "The name of the first tensor." }, "name_b": { "type": "string", "description": "The name of the second tensor." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "multiply_matrices", "description": "Performs matrix multiplication between two stored tensors.", "input_schema": { "type": "object", "required": [ "name_a", "name_b" ], "properties": { "name_a": { "type": "string", "description": "The name of the first tensor." }, "name_b": { "type": "string", "description": "The name of the second tensor." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "scale_matrix", "description": "Scales a stored tensor by a scalar factor.", "input_schema": { "type": "object", "required": [ "name", "scale_factor" ], "properties": { "name": { "type": "string", "description": "The name of the tensor to scale." }, "in_place": { "type": "boolean", "description": "If True, updates the stored tensor; otherwise, returns a new scaled tensor." }, "scale_factor": { "type": "number", "description": "The scalar value to multiply the tensor by." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "matrix_inverse", "description": "Computes the inverse of a stored square matrix.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the tensor to invert." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "transpose", "description": "Computes the transpose of a stored tensor.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the tensor to transpose." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "determinant", "description": "Computes the determinant of a stored square matrix.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the matrix." } } }, "output_schema": { "type": "number" } }, { "name": "rank", "description": "Computes the rank of a stored tensor.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the tensor." } } }, "output_schema": { "type": "integer" } }, { "name": "compute_eigen", "description": "Computes the eigenvalues and right eigenvectors of a stored square matrix.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the tensor to analyze." } } }, "output_schema": { "type": "object", "properties": { "eigenvalues": { "type": "array", "items": { "type": "number" } }, "eigenvectors": { "type": "array", "items": { "type": "array", "items": { "type": "number" } } } } } }, { "name": "qr_decompose", "description": "Computes the QR decomposition of a stored matrix.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the matrix to decompose." } } }, "output_schema": { "type": "object", "properties": { "q": { "type": "array", "items": { "type": "number" } }, "r": { "type": "array", "items": { "type": "number" } } } } }, { "name": "svd_decompose", "description": "Computes the Singular Value Decomposition (SVD) of a stored matrix.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the matrix to decompose." } } }, "output_schema": { "type": "object", "properties": { "s": { "type": "array", "items": { "type": "number" } }, "u": { "type": "array", "items": { "type": "number" } }, "v_t": { "type": "array", "items": { "type": "number" } } } } }, { "name": "find_orthonormal_basis", "description": "Finds an orthonormal basis for the column space of a stored matrix using QR decomposition.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the matrix." } } }, "output_schema": { "type": "array", "items": { "type": "array", "items": { "type": "number" } } } }, { "name": "change_basis", "description": "Changes the basis of a stored square matrix.", "input_schema": { "type": "object", "required": [ "name", "new_basis" ], "properties": { "name": { "type": "string", "description": "Name of the matrix in the tensor store." }, "new_basis": { "type": "array", "items": { "type": "array", "items": { "type": "number" } }, "description": "Columns are new basis vectors." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "create_tensor", "description": "Creates a NumPy array (matrix) with a specified shape and values.", "input_schema": { "type": "object", "required": [ "shape", "values", "name" ], "properties": { "name": { "type": "string", "description": "The name of the tensor to be stored." }, "shape": { "type": "array", "items": { "type": "integer" }, "description": "The shape of the resulting array as a list of integers." }, "values": { "type": "array", "items": { "type": "number" }, "description": "A flat list of values to populate the array." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "view_tensor", "description": "Returns an immutable view of a previously stored NumPy tensor from the in-memory tensor store.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the tensor as stored in the in-store dictionary." } } }, "output_schema": { "type": "object" } }, { "name": "list_tensor_names", "description": "Lists the names of all tensors currently stored in the tensor store.", "input_schema": {}, "output_schema": { "type": "string" } }, { "name": "delete_tensor", "description": "Deletes a tensor from the in-memory tensor store.", "input_schema": { "type": "object", "required": [ "name" ], "properties": { "name": { "type": "string", "description": "The name of the tensor to delete." } } }, "output_schema": {} }, { "name": "vector_project", "description": "Projects a stored vector onto another vector.", "input_schema": { "type": "object", "required": [ "name", "new_vector" ], "properties": { "name": { "type": "string", "description": "Name of the stored vector to project." }, "new_vector": { "type": "array", "items": { "type": "number" }, "description": "The vector to project onto." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "vector_dot_product", "description": "Computes the dot product between two stored vectors.", "input_schema": { "type": "object", "required": [ "name_a", "name_b" ], "properties": { "name_a": { "type": "string", "description": "Name of the first vector in the tensor store." }, "name_b": { "type": "string", "description": "Name of the second vector in the tensor store." } } }, "output_schema": { "type": "number" } }, { "name": "vector_cross_product", "description": "Computes the cross product of two stored vectors.", "input_schema": { "type": "object", "required": [ "name_a", "name_b" ], "properties": { "name_a": { "type": "string", "description": "Name of the first vector in the tensor store." }, "name_b": { "type": "string", "description": "Name of the second vector in the tensor store." } } }, "output_schema": { "type": "array", "items": { "type": "number" } } }, { "name": "gradient", "description": "Computes the symbolic gradient of a scalar function.", "input_schema": { "type": "object", "required": [ "f_str" ], "properties": { "f_str": { "type": "string", "description": "A string representing a scalar function (e.g., 'x**2 + y*z')." } } }, "output_schema": { "type": "string" } }, { "name": "curl", "description": "Computes the symbolic curl of a vector field, optionally evaluated at a point.", "input_schema": { "type": "object", "required": [ "f_str" ], "properties": { "f_str": { "type": "string", "description": "A string representing the vector field in list format (e.g., '[x+y, x, 2*z]')." }, "point": { "type": "array", "items": { "type": "number" }, "description": "A list of coordinates [x, y, z] to evaluate the curl numerically." } } }, "output_schema": { "type": "object", "properties": { "curl_sym": { "type": "string" }, "curl_val": { "type": "array", "items": { "type": "number" } } } } }, { "name": "divergence", "description": "Computes the symbolic divergence of a vector field, optionally evaluated at a point.", "input_schema": { "type": "object", "required": [ "f_str" ], "properties": { "f_str": { "type": "string", "description": "A string representing the vector field in list format (e.g., '[x+y, x, 2*z]')." }, "point": { "type": "array", "items": { "type": "number" }, "description": "A list of coordinates [x, y, z] to evaluate the divergence numerically." } } }, "output_schema": { "type": "object", "properties": { "divergence_sym": { "type": "string" }, "divergence_val": { "type": "number" } } } }, { "name": "laplacian", "description": "Computes the Laplacian of a scalar or vector field symbolically.", "input_schema": { "type": "object", "required": [ "f_str" ], "properties": { "f_str": { "type": "string", "description": "Scalar function as 'x**2 + y*z' or vector '[Fx, Fy, Fz]'." }, "is_vector": { "type": "boolean", "description": "Set True to compute vector Laplacian." } } }, "output_schema": { "type": "string" } }, { "name": "directional_deriv", "description": "Computes symbolic directional derivative of scalar field along a vector direction.", "input_schema": { "type": "object", "required": [ "f_str", "u" ], "properties": { "u": { "type": "array", "items": { "type": "number" }, "description": "Direction vector [vx, vy, vz]." }, "unit": { "type": "boolean", "description": "True if u should be normalized before calculating directional derivative." }, "f_str": { "type": "string", "description": "Expression like 'x*y*z'." } } }, "output_schema": { "type": "string" } }, { "name": "plot_vector_field", "description": "Plots a 3D vector field from a string '[u(x,y,z), v(x,y,z), w(x,y,z)]'", "input_schema": { "type": "object", "required": [ "f_str" ], "properties": { "n": { "type": "integer", "description": "grid resolution per axis" }, "f_str": { "type": "string", "description": "string representation of 3D field, e.g. '[z, -y, x]'." }, "bounds": { "type": "array", "items": { "type": "number" }, "description": "(xmin, xmax, ymin, ymax, zmin, zmax)" } } }, "output_schema": { "type": "object" } }, { "name": "plot_function", "description": "Plots a 2D or 3D mathematical function from a symbolic expression string.", "input_schema": { "type": "object", "required": [ "expr_str" ], "properties": { "grid": { "type": "integer", "description": "resolution of the plot grid" }, "xlim": { "type": "array", "items": { "type": "integer" }, "description": "(xmin, xmax) range for x-axis" }, "ylim": { "type": "array", "items": { "type": "integer" }, "description": "(ymin, ymax) range for y-axis (used in 2D or 3D)" }, "expr_str": { "type": "string", "description": "string representation of a function in x or x and y." } } }, "output_schema": { "type": "object" } } ], "version": "0.1.0", "categories": [], "description": "Add your description here" }
Forks
Watchers
Contributors
Last Push: 9/2/2025
Open Issues: 0